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Book Review: Large Scale Dynamics of Interacting 
Particles 

Large Scale Dynamics of Interacting Particles. H. Spohn, Springer, Berlin, 
1991. 

Any author who is going to write a mathematical text on a topic in statisti- 
cal physics, and in particular if he or she wants to treat the problem of 
deriving the macroscopic behavior of a large system from its microscopic 
structure, will necessarily have to expose the concept of the two different 
scales (macro and micro) in space and in time, and his central problem will 
be to establish theorems transforming that concept into precise mathemati- 
cal statements. In the concrete case of the present book, it is clear from the 
title that we will be faced with this type of problem, even more: that 
the objects of study are systems evolving in time and not equilibrium 
properties of large systems. 

The objects of investigation are "particle systems" which are governed 
either by a deterministic or a stochastic evolution mechanism. The 
stochastic systems considered are lattice gases. This has the advantage that 
by choosing one concrete class of examples, unnecessary repetitions are 
avoided; it is not felt by the reader as a serious restriction, since the text 
contains in shorter form plenty of information on other models belonging 
to the same "universality class." (The reviewer does not believe that the 
property of being "realistic" is the only criterion for deciding whether 
systems having a stochastic evolution are legitimate objects of study for a 
statistical physicist. For him, the study of those systems is justified for 
another reason: it gives the mathematical physicist a chance to establish in 
a simplified frame--if one likes: in a toy model--at  least partially rigorous 
results and to work out in full conceptual clarity essential features of the 
transition from the microscopic to the macroscopic world.) The deter- 
ministic systems treated in Spohn's book are classical particles, which 
means that quantum mechanical models are not taken into consideration-- 
for good reasons: quantum mechanical nonequilibrium theory would be a 
completely different story. Consequently, the book divides into two parts. 

The first part, on classical mechanical particles, covers slightly less 
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than one-half of the total volume. After some introductory paragraphs 
on many-particle dynamics and equilibrium states, several types of 
limiting bulk dynamics (i.e., limiting laws for the evolution of the empirical 
measure in phase space) are discussed: hydrodynamic, Boltzmann-Grad 
(low-density), mean-field. For all three types in addition to nonequilibrium 
behavior (laws of large numbers) also equilibrium fluctuations are studied. 
Finally, the dynamics of a single (test or tracer) particle belonging to a 
large system is considered. Though a broad range of subjects is covered by 
this first part, not all of them are treated equally in great detail: the main 
emphasis is clearly on the section dealing with the Boltzmann-Grad limit. 
For the mathematician, this section appears to be the hard core of Part I. 
The reason is clear: the main result one can present in the context chosen 
by the author is Lanford's (5) derivation of the Boltzmann equation; there 
exists no result on the hydrodynamic limit for classical particles comparable 
to Lanford's theorem; finally, mean-field theories are only first steps in the 
study of many-particle systems, very useful in the years of Kac and McKean, 
but their value in producing interesting theorems which are able to link 
macro and microscales in space and time is limited. 

The second part, on stochastic systems--more precisely: lattice gases 
consisting of migrating particles without creation or annihilation of mass, 
with a time-reversible evolution in equilibrium is in the reviewer's opinion 
of greater importance than the first one, because it reflects a more recent 
development which took place in the years from about 1985 to 1990. There 
are three topics which play a major role: dynamical equilibrium fluctua- 
tions, nonequilibrium dynamics, both for the bulk dynamics, and self- 
diffusion. In addition, there are sections on "driven" (i.e., nonreversible) 
lattice gases giving rise to an unviscid Burgers'-type equation in the scaling 
limit, on phenomena appearing beyond the hydrodynamic time scale 
(stochastic description of shocks and a discussion of how Navier-Stokes 
might be understood in the context of lattice gases), and on models which 
are not precisely lattice gases but share many essential features of them 
(such as interacting Brownian particles, for example). The main result in 
equilibrium fluctuation theory besides the corresponding central limit 
theorem (7) is the Green-Kubo formula and an equivalent variational 
formula characterizing the bulk diffusion matrix. In nonequilibrium theory 
the main result presented is (a lattice gas version of) a theorem of Guo, 
Papanicolaou, and Varadhan ~3) which states that the limiting bulk 
behavior is governed by a nonlinear parabolic equation. In self-diffusion, 
the central result presented is--in its mathematical essence--a central limit 
theorem for certain additive functionals of a reversible Markov process./2'4) 

Given the foregoing short list of main theories treated (which is--as I 
said before--not exhaustive), it is natural to ask if there is a unifying 
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central idea in this monograph or if the book is rather an addition of two 
more or less independent parts. The reviewer adheres more to the second 
answer. But he has to say that his judgement is not independent of his 
personal taste: he prefers the material exposed in Part  II  and is more likely 
to use it, whereas Part  I is a good source of additional information on 
Markovian limits for deterministic systems; which means the question of 
whether there exists such a unifying central idea for the book as a whole 
is not essential. 

If  we look at only one part, the same question appears again: is what 
we see just a collection of various phenomena connected to large-scale 
limits, or are there unifying notions and methods behind them? For  
example, in Part  II, entropy or entropy production (or, derived from there, 
the state of minimal entropy production) is such a notion which even leads 
to a method of proving limit theorems, as shown in ref. 3. Another common 
feature in the theory of lattice gases exposed here is their reversibility; this 
indicates that one is on the way to interesting rigorous results in the 
context of Onsager's reciprocity relations, but for systems which are not 
just finite-dimensional, but carry a much richer spatial structure. It is also 
obvious that self-diffusion and bulk diffusion in equilibrium, though 
conceptually distinct, are intimately connected to each other because they 
are observed in the same dynamical systems using the same scaling of space 
and time. In other words, there are indeed some unifying features and 
notions which connect different sections of the book. On the other hand, 
the book contains a broad variety of different material, and it is not easy 
to say which is its predominant  character: is it a dissertation on a single 
subject, treating one question by essentially one method, or is it rather a 
collection of different approaches to different topics, which are loosely or 
narrowly related to each other? I think that such an ambiguity is legitimate 
for a text which is motivated by the aspiration to explain certain physical 
phenomena (discovered a long time before the years 1985-1990) and is not 
conceived as a monograph  on, say, partial differential equations. 

Readers who will profit most from Spohn's book are mathematicians 
or mathematical  physicists working with probabilistic methods. But also 
for more physically minded people on one band and mathematical  
probabilists on the other it can be of great help, because these readers can 
use it as an excellent survey of results in a neighboring discipline. In par- 
ticular, the thoroughly elaborated list of references is of inestimable value 
equally for specialists and those who only want to get some orientation. 
For 'example, a reader might like to learn more in Part  I on the results and 
methods of Bunimovich and Sinai (1) concerning the Lorentz gas; but the 
available space is not unbounded, and so he or she will appreciate the 
one-page introduction and the reference on p. 118 even if no proof of 
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Theorem 8.2 is given. Wha t  might  be harder  for a nonspecia l is t - -say for a 
person coming from pure probabil i ty theory- - i s  to find th rough  this text 
an access to stimulating problems in mathematical  physics, because the 
au thor  does not  offer too  much  help to overcome the possibly very high 
language barrier: the book  is written to some degree in a kind of  insider 
j a rgon  which, together with a sometimes slightly informal and certainly not  
pedantic way of  dealing with mathematical  epsilons (for example, the 
au thor  says that  certain limiting evolutions, which are true in a scaling 
limit, hold "with probabil i ty one") may  sound unusual  to a person not  yet 
living in the world of probabilistic mathematical  physicists. 

A final remark. In  my opinion, the time of appearance o f  this 
m o n o g r a p h  is well chosen. There exist by now sufficiently many  new results 
and methods  on macroscopic  properties of reversible stochastic particle 
systems, beyond  the textbook of  Liggett, (6) which makes it desirable to 
collect and present essential parts of  the existing material. On  the other 
hand, the subject is still far f rom having found its canonical  form, it is 
- - f o r t u n a t e l y - - n o t  yet a scholastic discipline with a well-established system 
of axioms and conditions, and it contains much more  open than solved 
problems. So Spohn 's  text will p robably  be very useful as a guide and 
reference book  to future researchers for some years, which I find is a much 
nicer role to play than being an encyclopedia of reversible stochastic 
particle systems for some decades. 
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